Радиоизото́пные исто́чники эне́ргии — устройства различного конструктивного исполнения, использующиеэнергию, выделяющуюся при радиоактивном распаде, для нагрева теплоносителя или преобразующие её вэлектроэнергию.
Радиоизотопный источник энергии принципиально отличается от атомного реактора тем, что в нём используется не управляемая цепная ядерная реакция, а энергия естественного распада радиоактивных изотопов.
Виды и типы генераторов и элементов
Радиоизотопные источники питания подразделяются на:
- Радиоизотопные термоэлектрические генераторы (РИТЭГи): используются термоэлементы.
- Радиоизотопные термоэмиссионные генераторы: используется термоэмиссионный преобразователь.
- Радиоизотопные комбинированные генераторы: используются термоэмиссионный преобразователь (1-я ступень) и термоэлементы (2-я ступень преобразования).
- Радиоизотопные паротурбинные генераторы: парортутные турбины или пароводяные турбины и электрогенератор.
- Атомные элементы: альфа- и бета-излучающие изотопы, помещённые в вакуумные капсулы, создают очень высокое напряжение при малых токах.
- Атомные полупроводниковые элементы: облучение полупроводниковых сборок в заданном направлении.
- Радиоизотопные пьезоэлектрические источники.
- Радиоизотопные оптико-электрические источники.
- Радиоизотопные источники высокопотенциального тепла: получение нагретых жидкостей (вода, топливо и др.) и газов для отопления, обогрева резервных батарей и др.
- Радиоизотопные подогреватели и ионизаторы воздуха: подогрев (частичный) и сильная ионизация воздуха или кислорода подаваемого в металлургические печи (интенсификация горения топлива).
- Радиоизотопные реактивные двигатели: используются высококонцентрированные и тугоплавкие соединения радиоизотопов с максимальным выделением энергии для нагрева рабочих тел (водород, гелий) используемых в реактивных двигателях малой мощности (маневрирование спутников).
Области применения
Радиоизотопные источники энергии применяются там, где необходимо обеспечить автономность работы оборудования, значительную надёжность, малый вес и габариты. В настоящее[когда?] время основные области применения — это космос (спутники, межпланетные станции и др), глубоководные аппараты, удаленные территории (крайний север, открытое море, Антарктика). Например, изучение «глубокого космоса» без радиоизотопных генераторов невозможно, так как при значительном удалении от Солнца уровень солнечной энергии, который можно использовать посредством фотоэлементов, исчезающе мал. Например, на орбите Сатурна освещенность Солнцем в зените соответствует земным сумеркам. Кроме того, при значительном удалении от Земли для передачи радиосигналов с космического зонда требуется очень большая мощность. Таким образом, единственным возможным источником энергии для КА в таких условиях, помимо атомного реактора, выступает именно радиоизотопный генератор.
Существующие области применения:
- Медицина: электропитание электрокардиостимуляторов и др.
- Энергопитание маяков и бакенов.
Перспективные области применения:
- Роботы-андроиды: Электротеплопитание. Как основной источник энергии.
- Боевые лазеры космического базирования: Накачка лазеров и электротеплопитание.
- Боевые машины: Мощные двигатели с большим ресурсом (беспилотные разведывательные аппараты — самолеты и мини-лодки, энергопитание боевыхвертолетов и самолетов, а также танков и автономных пусковых установок).
- Глубоководные гидроакустические станции: длительное энергопитание невозвращаемых аппаратов.
С развитием и ростом ядерной энергетики цены на важнейшие генераторные изотопы быстро падают, а производство изотопов быстро возрастает, что и предопределяет расширение радиоизотопной энергетики. В то же время стоимость изотопов, получаемых облучением (U-232, Pu-238, Po-210, Cm-242 и др.), снижается незначительно, и потому во многих странах, обладающих развитой радиоизотопной промышленностью, изыскиваются способы более рациональных схем облучения мишеней, более тщательной переработки облучённого топлива. В значительной мере надежды на расширение производства синтетических изотопов связаны с ростом сектора реакторов на быстрых нейтронах и возможным появлением термоядерных реакторов. В частности, именно реакторы на быстрых нейтронах с использованием значительных количеств тория позволяют надеяться на получение больших промышленных количеств урана-232. Повышение объёмов производства изотопов специалисты связывают прежде всего с увеличением удельной мощности реакторов, уменьшением утечки нейтронов, увеличением флюенса нейтронов, сокращением сроков облучения мишеней, разработкой непрерывных циклов отделения ценных изотопов [1].
При использовании изотопов во многом разрешается проблема утилизации отработанного ядерного топлива, и радиоактивные отходы из опасного мусора превращаются не только в дополнительный источник энергии, но и в источник значительного дохода. Практически полная переработка облучённого топлива способна приносить денежные средства, сопоставимые со стоимостью энергии, выработанной при делении ядер урана, плутония и других элементов.))
Свежие комментарии